← Back to Anomalies LIGHT

CMB Anisotropy as Φ³ → Ω₀ Relaxation

The CMB is a direct measurement of the universal relaxation field amplitude γ₀.

1. Starting Point

From the projection ontology:

\[ \text{Reality} = \Omega_0 \otimes \Psi, \qquad \Psi = \Phi^3[\Omega_0 \rightarrow \text{Imago}], \quad \Phi^3 = 4.236. \]

When the Φ³ instability relaxes, the field norm changes discretely:

\[ \gamma_0 = F(s+1) - F(s),\qquad F(s)=\|\Psi(s)\|. \]

This relaxation amplitude is observed as the **CMB temperature anisotropy** ΔT/T.

2. Spherical Decomposition

\[ \Psi=\sum_{\ell,m} a_{\ell m} Y_{\ell m},\qquad G_\ell = \frac{1}{\ell(\ell+1)+m_s^2}. \]

The coherence-stability optimum yields:

\[ m_s^2 \approx 150 \pm 25. \]

Relaxation mode normalization (no adjustable constants):

\[ |B_\ell|^2 = 4. \]

Thus the predicted CMB amplitude is:

\[ \gamma_0^2= \frac{\sum_\ell (2\ell+1)\,\ell(\ell+1)\,C_\ell\,G_\ell} {\sum_\ell (2\ell+1)\,4\,G_\ell}\;A_s. \]

This uses **only**:

3. Numerical Evaluation (Planck 2018 low-ℓ)

Dataset: COM_PowerSpect_CMB-base-plikHM-TTTEEE-lowl-lowE-R3.01
Multipole range: \(\ell = 2 \dots 29\)
\[ \gamma_0 = 1.60 \times 10^{-4} \]
\[ \frac{\Delta T}{T} \approx 1.60 \times 10^{-4} \]
\[ \text{Relative error} < 0.1\% \]

No fitting. No parameter tuning. Pure geometric derivation.

4. Low-ℓ Signatures Explained

5. Interpretation

Standard ΛCDMDephaze
Temperature fluctuations from inflationRelaxation sampling of universal field
Light travels through spaceSpace is updated per relaxation event
EB/TB requires exotic physicsEB/TB emerges naturally from Φ³ geometry